A REAL-TIME PHYSICAL PROGRESS MEASUREMENT METHOD FOR SCHEDULE PERFORMANCE CONTROL USING VISION, AN AR MARKER AND MACHINE LEARNING IN A SHIP BLOCK ASSEMBLY PROCESS

A Real-Time Physical Progress Measurement Method for Schedule Performance Control Using Vision, an AR Marker and Machine Learning in a Ship Block Assembly Process

A Real-Time Physical Progress Measurement Method for Schedule Performance Control Using Vision, an AR Marker and Machine Learning in a Ship Block Assembly Process

Blog Article

Progress control is a key technology for successfully carrying out a project by predicting possible problems, particularly production delays, and establishing sophie allport bee curtains measures to avoid them (decision-making).However, shipyard progress management is still dependent on the empirical judgment of the manager, and this has led to delays in delivery, which raises ship production costs.Therefore, this paper proposes a methodology for shipyard ship block assembly plants that enables objective process progress measurement based on real-time work performance data, rather than the empirical judgment of a site manager.In particular, an IoT-based physical progress measurement method that can automatically measure work metabo 15-gauge finish nailer cordless performance without human intervention is presented for the mounting and welding activities of ship block assembly work.

Both an augmented reality (AR) marker-based image analysis system and a welding machine time-series data-based machine learning model are presented for measuring the performances of the mounting and welding activities.In addition, the physical progress measurement method proposed in this study was applied to the ship block assembly plant of shipyard H to verify its validity.

Report this page